Affiliation:
1. Southwest State University
2. Belgorod State Technological University
Abstract
Purpose of reseach is of the work is to develop an algorithm for calculating stable invariant manifolds of saddle periodic orbits of piecewise smooth maps. Method is based on iterating the fundamental domain along a stable subspace of eigenvectors of the Jacobi matrix calculated at a saddle periodic fixed point. Results. A method for calculating stable invariant manifolds of saddle periodic orbits of piecewise smooth maps is developed. The main result is formulated as a statement. The method is based on an original approach to finding the inverse function, the idea of which is to reduce the problem to a nonlinear first-order equation. Conclusion. A numerical method is described for calculating stable invariant manifolds of piecewise smooth maps that simulate impulse automatic control systems. The method is based on iterating the fundamental domain along a stable subspace of eigenvectors of the Jacobi matrix calculated at a saddle periodic fixed point. The method is based on an original approach to finding the inverse function, which consists in reducing the problem to solving a nonlinear first-order equation. This approach eliminates the need to solve systems of nonlinear equations to determine the inverse function and overcome the accompanying computational problems. Examples of studying the global dynamics of piecewise-smooth mappings with multistable behavior are given.
Publisher
Southwest State University
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献