1. Viger I. Features of virtual prototyping technology at all stages of the product lifecycle // CAD/CAM/CAE Observer, 2016, no. 8 (108), pp. 48–53.
2. Bui, T. L., Doan P.T., Park S.S., Kim H. K., Kim S. B. AGV Trajectory Control Based on Laser Sensor Navigation. International Journal of Science and ing, 2013, vol. 4(1), 16-20, pp. 39–43.
3. Ivanjko E., Petrinić T., Petrović I. Modelling of Mobile Robot Dynamics. EUROSIM 2010, 7th EUROSIM Congress on Modelling and Simulation, Prague, Czech Republic, 06- 10.09.2010. Prague, 2010, vol. 2, 9 p. Available at: http://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCcQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F228561343_Modelling_of_Mobile_Robot_Dynamics%2Ffile%2F504635256b78692e72.pdf&ei=V7lbU7HuAuGfyQPI8YG4DA&usg=AFQjCNHkX15eujeaVwSrM8F1ueQByAgHJQ&sig2=mx3Ba0ecN3b-6WsJqVJWbQ&bvm=bv.65397613,d.bGE.
4. Suárez J. I., Vinagre B.M., Gutierrez F., Naranjo J. E., Chen Y. Q. Dynamic Models of an AGV Based on Experimental Results. 5th Symposium Intelligent autonomous vehicles. Oxford, 2005, vol. 1, pp. 275-280.
5. Rybin I. A., Rubanov V. G., Aparshev S. A. [Hybrid model of the dynamics of a mobile robot]. Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT 25 sb. trudov XXV Mezhdunar. nauch. konf. [Mathematical Methods in Engineering and Technology – MMTT- 25. coll. of proceedings of the XXV Intern. scientific Conf.]. Vol. 10. Section 12. Kharkov; 2012, pp. 6–8 (In Russ.).