Chebyshev Alternance when Approximating Initial Conditions of the Inverse Cauchy Problem

Author:

Loktionov А. P.1ORCID

Affiliation:

1. Southwest State University

Abstract

Purpose of research. The work is devoted to a range of questions related to Cauchy problem on the segment of real axis with the application of the inverse Cauchy problem, in which real constants are initial conditions which are optimally restored according to experimental or tabular values of the solution of the differential equation. The object of the study is an information-measuring system, in which approximate values of initial conditions are calculated from discrete function values of Cauchy problem solving.Methods. The following problems are solved for this purpose: parameters of measuring section placement on the investigated object and approximation grid on measuring section are developed. Characteristics of recovery accuracy of initial conditions of the task are formulated.Results. An experimental-calculated method of determining initial conditions in the inverse Cauchy problem is proposed. It is based on the concept of objective function of regularization of the problem. Task regularization parameter in the form of minimum value by Lebesgue function is proposed.Conclusion. The reaction of uniformly approximating method of the initial conditions of the inverse Cauchy problem to the deviation of the approximation grid coordinates nodes from the coordinates of Chebyshev alternance was described. Graphs of method reaction to deviation of grid pitch from optimal pitch are given.

Publisher

Southwest State University

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference34 articles.

1. Loktionov A. P. Chislennoe differentsirovanie v modeli izmerenii [Numerical differentiation in the measurement model]. Izmeritel'naya texnika = Measurement Techniques, 2019, no. 8, pp. 14-19. https://doi.org/10.32446/0368-1025it.2019-8-14-19.

2. Loktionov A. P., Maksimov Yu.A., Titov V.S. [Numerical differentiation in the inverse Cauchy problem]. Svarka i rodstvennyye tekhnologii v mashinostroyenii i elektronike. Sbornik nauchnykh tr. Is. 4. Kursk, 2002, pp. 263-268. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=21788616. (accessed 20.04.2021).

3. Ahnert K., Abel M. Numerical differentiation of experimental data: local versus global methods. Computer Physics Communications. 2007, vol. 177(10), pp. 764-774. https://doi.org/10.1016/j.cpc.2007.03.009.

4. Loktionov A. P. Strukturnaya regulyarizatsiya podsistemy preobrazovatel'nogo komponenta preobrazovatel'no-vychislitel'nykh sistem [Structural regularization of the subsystem of the converting component of converting computing systems]. Kursk, 2009.

5. Stickel J.J. Data smoothing and numerical differentiation by a regularization method. Computers & Chemical Engineering, 2010, vol. 34(4), pp. 467-475. https://doi:10.1016/j.compchemeng.2009.10.007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3