Development of Gastro-floating drug delivery system by 3D Printing: Impact of formulation and design on the release profile of Baclofen

Author:

Abdulkhaleq Nuha Mohammed,Ghareeb Mowafaq M.

Abstract

Objectives: Baclofen is a skeletal muscle relaxant with a short half-life and a narrow absorption window in the upper part of the gastrointestinal tract, and this study aims to formulate a sustained-release tablet of baclofen and 3D printing of gastro-floating device and study the effect of various polymers and device design on the release profile of baclofen. Method: Firstly, four formulas were produced through the hot-melt extrusion and direct compression of the extrudate to produce 30 mg baclofen tablets, then four gastro-floating devices (A, B, C, and D) were designed with two air pockets to enable the floating of the device and have drug-releasing windows with total surface area 4, 10, 20, and 40 mm2 respectively, for drug release. 3D printing of the devices was done by an FDM printer and the tablets were inserted into each device and test it for drug release. Results: Decreasing the surface area of the drug releasing windows revealed a significant reduction in the dissolution of baclofen irrespective of the type of polymers and useful for sustained release formulation but may be associated with lag time. Devices with one and two releasing windows (Device B and C respectively) sometimes revealed similar dissolution profiles and this related to the position of the window regarding the surface of the dissolution media. Device D with four windows and a 40 mm2 surface area was found to produce more reliable results. F3 which contains Eudragit RS-100 as the main polymer showed sustained release in device D where the complete dissolution of the drug occurred in 12 hours, and the gastro-floating device remained floating all the time and was assayed for drug content, FT-IR, and DSC study. Conclusion: Hot-melt extrusion was successfully employed to produce sustained release tablets of baclofen. FDM 3D printers are considered a potential tool to produce gastro-floating devices with the required design and release profile.

Publisher

Naba'a Al-Hayat Foundation for Medical Sciences and Health Care

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3