ANN AND ANALYTICAL SOLUTIONS TO RELATIVISTIC ISOTHERMAL GAS SPHERES

Author:

Nouh M. I.1,Azzam Y. A.1,Abdel-Salam E. A-B2,Elnagahy F. I.1,Kamel T. M.1

Affiliation:

1. Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt.

2. Department of Mathematics, Faculty of Science, New Valley University, Egypt.

Abstract

Relativistic isothermal gas spheres are a powerful tool to model many astronomical objects, like compact stars and clusters of galaxies. In the present paper, we introduce an artificial neural network (ANN) algorithm and Taylor series to model the relativistic gas spheres using Tolman-Oppenheimer-Volkoff differential equations (TOV). Comparing the analytical solutions with the numerical ones revealed good agreement with maximum relative errors of 10−3. The ANN algorithm implements a three-layer feed-forward neural network built using a back-propagation learning technique that is based on the gradient descent rule. We analyzed the massradius relations and the density profiles of the relativistic isothermal gas spheres against different relativistic parameters and compared the ANN solutions with the analytical ones. The comparison between the two solutions reflects the efficiency of using the ANN to solve TOV equations.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3