Feasibility of urban waste for constructing Technosols for plant growth

Author:

Prado Blanca,Mora Lucy,Abbruzzini Thalita,Flores Sebastián,Cram Silke,Ortega Pilar,Navarrete Armando,Siebe Christina

Abstract

An alternative for sustainable urban development is to revegetate cities with the construction of planters as well as to recover degraded sites. The objective of this work was to characterize urban waste materials produced in Mexico City and to evaluate their potential for constructing Technosols for plant growth, as an alternative to use in revegetating the city without affecting natural landscapes. Construction and demolition waste materials amended with different application rates of compost made out of gardening wastes from Mexico City green areas were tested. Nine mixtures were prepared; three based on concrete, three based on demolition waste and three based on excavation waste. Changes on physical, chemical and physicochemical properties of these mixtures, namely nutrient contents, water retention and aeration capacity, were monitored in a twelve-month experiment. The mineralogy and the risk regarding the release of heavy metals and trace elements were also evaluated in the soluble fraction. The constructed Technosols were appropriate, to a greater or lesser extent, for tomato plant growth. Soil pH and soil electrical conductivity (EC) were the main factors defining their suitability; both parameters changed over time due to the washing of salts. The particle size of the mineral materials as well as the application rates of compost used in the construction of the Technosols resulted in adequate water holding capacity and soil aeration for plant growth. The type of parental materials defined the majority of the Technosol characteristics as well as their ability to function as a plant support. The concentrations of readily available heavy and trace metals were not a limitation for plant growth. However, potential co-transport of these elements with soluble organic matter should be considered in further research.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3