A semi-analytical method applied to turbocharger engine model

Author:

Nave OPhir

Abstract

In this study, we apply a new version of the Homotopy Analysis Method called decomposition of the homotopy analysis method (DHAM). The DHAM method is based on the decomposition of the right-hand side of a given system of differential equations into a sum of functions. After the decomposition one can apply the HAM method. The physical model that we investigate in this paper is a complex system of equations that contains nonlinear ordinary differential equations of the first order. The system of equations takes into account the important variables such as the pressure, the temperature, the mass flow, the torque due to the turbine turbocharger, the torque from the compressor, the speed of turbocharger, etc. This system is very complex and cannot be solved analytically. The HAM method includes an artificial small parameter that inserts into the physical model and hence it enables one to apply different asymptotic methods. We compared the results of DHAM and HAM to numerical simulations analyses. We concluded that the DHAM results are closer to the numerical simulation results.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3