How to use solutions of Advection-Dispersion Equation to describe reactive solute transport through porous media

Author:

Ramírez Sabag Jetzabeth,López Falcón Dennys Armando

Abstract

ResumenLas soluciones de la Ecuación de Advección-Dispersión son usadas frecuentemente para describir el transporte de solutos a través de medios porosos, considerando adsorción en equilibrio, de tipo lineal y reversible. Para indicar algunas sugerencias acerca de este tema, se hizo una revisión de las soluciones analíticas disponibles. Hay soluciones para Problemas con Condiciones de Frontera, de primer y tercer-tipo en la entrada así como de primer y segundo-tipo a la salida. Se analiza el comportamiento de las soluciones equivalentes, para sistemas finitos y semi-infinitos, observando que las soluciones de los sistemas semi-infinitos se aproximan a las correspondientes de los sistemas finitos conforme la condición de frontera de salida en el infinito se aproxima a la ubicación de medición del sistema finito. Solamente se presentan las soluciones analíticas con condiciones de frontera de segundo-tipo a la salida, ya que son iguales a las correspondientes soluciones analíticas con frontera de primer-tipo a la salida, para ambos tipos de condiciones de frontera de entrada usadas. Un análisis paramétrico, basado en el número de Peclet, muestra que todas las soluciones convergen cuando el número de Peclet es mayor que veinte. Los sistemas investigados deben tener un número de Peclet mayor que cinco para usar con confianza las soluciones de la Ecuación de Advección-Dispersión para describir el transporte de soluto en medios porosos.Palabras Clave: Ecuación de Advección-Difusión, Soluciones Analíticas, Transporte de Solutos Reactivos, Medios Porosos.AbstractThe solutions of Advection-Dispersion Equation are frequently used to describe solute transport through porous media when considering lineal and reversible equilibrium adsorption. To notice some warnings about this item, a review of analytical solutions available was done. There are solutions for Boundary Value Problems with first and third-type inlet boundary conditions as well as first and second-type outlet boundary condition. The behavior of equivalent solutions for finite and semi-infinite systems are analyzed, observing that semi-infinite system solutions approximates to the corresponding finite ones as the “infinite” outlet boundary condition approach to the finite measurement location. Because the analytical solutions with a first-type outlet boundary condition are equal to the corresponding analytical solutions with a second-type one, for both inlet boundary condition type used, only the latter is presented. A parametric analysis based on Peclet number shows that all solutions converge for Peclet number greater than twenty. Systems under research must have Peclet number greater than five to use confidently the solutions of Advection-Dispersion Equation to describe reactive solute transport through porous media.Keywords: Advection-Diffusion Equation, Analytical solutions, Reactive Solute Transport, Porous Media.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Energy,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3