Numerical simulation of multiple scattering of P and SV waves caused by near-surface parallel cracks

Author:

Ávila-Carrera Rafael,Rodríguez-Castellanos Alejandro,Valle-Molina Celestino,Sánchez-Sesma Francisco José,Luzón Francisco,González-Flores Ernesto

Abstract

Scattering and diffraction of P and SV waves caused by parallel oriented cracks located near to a free surface are investigated in this work. The Indirect Boundary Element Method (IBEM) was applied for studying the wave propagation phenomena in a half-plane model that contain the cracks. Various incidence angles of P and SV waves are considered. Sometime before it has been reported that a near free-surface crack generates scattered surface waves whose amplitude spectra show conspicuous resonance peaks. Such effect has been attributed to local resonances originated in a virtual layer between the shallowest crack and the free surface. For our case of two parallel crack system, where cracks are located at different depths, the amplitude spectra show additional peaks, which can be associated with the presence of the second crack. Given similar sizes between these two cracks, the characteristic resonance frequency observed at the free surface corresponds mainly to the equivalent layer formed by the shallowest crack and the free surface. However, when the deepest crack becomes sufficiently large with respect to the shallow crack, two resonance characteristic frequency peaks appear in the measured spectra at the free surface. Some examples including a three crack system are also illustrated in our work. The identification and characterization of the seismic response for the scattered field generated by the second and third crack has been an intricate task and, the time domain interpretation of traces becomes quite complicated. The results in this paper have been validated against some other reported from classic papers. In order to show the seismic response and multiple scattering effects due to the presence of systems of cracks, calculations in frequency and time domain are provided.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Energy,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3