Relation of shear wave velocity variations with depth for different lithologies: A contribution towards mitigating the region's seismic risk

Author:

Singh Jyoti,Joshi Anand

Abstract

The state of Uttarakhand in India lies in a highly seismically active zone, therefore earthquake re- sistant design criteria have been followed for major construction practice in this region. One of the major inputs for earthquake-resistant design is average shear wave velocity (VS ) at 30 m depth. In the present work, at twenty-six different sites, the Horizontal to vertical spectral ratio (HVSR) technique and multichannel analysis of surface wave (MASW) is used for joint analysis to obtain a one-dimensional velocity model that supports both the HV spectrum and dispersion curve obtained from HVSR and MASW methods, respectively. Shear wave profiles obtained at various sites are compared with the bore log data obtained from drilling and it clearly shows that the (VS ) for the same formation have a strong dependence on the depth at which it occurred. Data from twenty- four shear wave profiles have been used to prepare a linear regression relation of (VS ) for different lithological formations with respect to their depth of occurrence. Root mean square error obtained from the developed relationship for various lithologies clearly shows that the results are fairly well within the range of acceptance. The developed relations have been further validated by calculating Vs profile from bore log data obtained at two new location sites that are not included in the data set used for the preparation of regression relations. A comparison of two velocity sections clearly shows that the velocity profile computed from regression relation matches closely with that obtained from the seismic survey and thereby establishing the efficacy of developed regression relationship for its practical implementation. This developed relation allows soil type classification for zoning purposes.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Energy,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3