Field Experiments and Technical Evaluation of an Optimized Media Evaporative Cooler for Gas Turbine Power Augmentation

Author:

Behdashti A.,Ebrahimpour M.,Vahidi B.,Omidipour V.,Alizadeh A.

Abstract

This paper discusses an optimized media type evaporative cooling system called Outdoor Movable Media cooler which has been recently implemented on two 160 MW, V94.2 gas turbines of Kerman combined cycle power plant, Iran. The air cooling system can be applied to retrieve the lost power generation capability of gas turbine during hot months. System description is completely presented and optimizations such as making a movable media cooler are described. The moving ability of this system eliminates the power loss related to the conventional media coolers. Furthermore, experimental work including evaluation of humidity effect on the air filters operation is discussed and the results are presented. The cooling system performance curve shows the system capability of cooling the inlet air up to 19°C at the design condition. This cooling capacity leads to power augmentation up to 14% which is noteworthy in responding to the electricity demand in hot months, when air-conditioning loads are maximized. Considering several parameters, a cost analysis is done finally and payback period of the system is calculated.

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3