An Automated method for the analysis of bearing vibration based on spectrogram pattern matching

Author:

Arun P.,Lincon S. Abraham,Prabhakaran N.

Abstract

As a mean for non-intrusive inspection of bearing systems, the scope of predicting their condition from the acoustic vibrations liberated during their operation, utilizing signal processing methods, has been of extensive research, over decades. Vibration being highly non-stationary, time domain as well as spectral features cannot characterize its behavior. Even though spectrogram is a time-frequency domain feature extraction technique, its interpretation is tedious and perhaps, subjective. In the proposed method, the spectrogram images of the normal vibration data is compared with that of the contextual vibration, using Structural Similarity Index Metric (SSIM). It is hypothesized that the pattern similarity between the contextual spectrogram and the baseline is low when the bearing is faulty. The SSIM between the spectrogram image of normal bearing vibration data and the baseline is different from those between the baseline and vibration data corresponding to Inner Race Failure (IRF), Roller Element Defect (RED) and Outer Race Failure (ORF). Via the proposed method of spectrogram pattern matching based on SSIM, the subjectivity in the comparative interpretation of spectrogram is eliminated fully. The SSIM corresponding to the vibrations acquired from the normal and faulty bearings differ with a P value of 4.43693x 10-16. The technique can distinguish defective bearings with, 95.74% sensitivity, 96% accuracy and 100% specificity, without dismantling or open intervention

Publisher

Universidad Nacional Autonoma de Mexico

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3