Genome-Wide Exome Analysis of Cmv5-Disparate Mouse Strains that Differ in Host Resistance to Murine Cytomegalovirus Infection

Author:

Gillespie Alyssa12,Lee Heather3,Robertson Catherine4,Cabot Maya5,Brown Michael G124

Affiliation:

1. Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia 22908

2. Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia

3. Department of Biology, University of Virginia School of Medicine, Charlottesville, Virginia

4. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia

5. Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908

Abstract

Abstract Host resistance to murine cytomegalovirus (MCMV) varies in different strains of laboratory mice due to differences in expression of determinants that control and clear viral infection. The major histocompatibility complex class I Dk molecule is one such determinant that controls MCMV through the action of natural killer (NK) cells. However, the extent of NK cell–mediated Dk-dependent resistance to infection varies in different mouse strains. The molecular genetic basis of this variation remains unclear. Previous work to examine the Dk effect on MCMV resistance in MA/My × C57L offspring discovered multiple quantitative trait loci (QTL) that may serve to modify NK cells or their capacity to respond during MCMV infection. One QTL in particular, Cmv5, was found to regulate the frequency of NK cells and secondary lymphoid organ structure in spleen during MCMV infection. Cmv5 alleles, however, have not been identified. We therefore sequenced and analyzed genome-wide exome (GWE) variants, including those aligned to the critical genetic interval, in Cmv5-disparate mouse strains. Their GWE variant profiles were compared to assess strain-specific sequence data integrity and to analyze mouse strain relatedness across the genome. GWE content was further compared against data from the Mouse Genomes Project. This approach was developed as a platform for using GWE variants to define genomic regions of divergence and similarity in different mouse strains while also validating the overall quality of GWE sequence data. Moreover, the analysis provides a framework for the selection of novel QTL candidate sequences, including at the Cmv5 critical region.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3