Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize

Author:

Karn Avinash1,Gillman Jason D12,Flint-Garcia Sherry A12

Affiliation:

1. Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211

2. United States Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211

Abstract

Abstract Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared with maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic lines (NILs) was previously developed to broaden the resources for genetic diversity of maize, and to discover novel alleles for agronomic and domestication traits. The 961 teosinte NILs were developed by backcrossing 10 geographically diverse parviglumis accessions into the B73 (reference genome inbred) background. The NILs were grown in two replications in 2009 and 2010 in Columbia, MO and Aurora, NY, respectively, and near infrared reflectance spectroscopy and nuclear magnetic resonance calibrations were developed and used to rapidly predict total kernel starch, protein, and oil content on a dry matter basis in bulk whole grains of teosinte NILs. Our joint-linkage quantitative trait locus (QTL) mapping analysis identified two starch, three protein, and six oil QTL, which collectively explained 18, 23, and 45% of the total variation, respectively. A range of strong additive allelic effects for kernel starch, protein, and oil content were identified relative to the B73 allele. Our results support our hypothesis that teosinte harbors stronger alleles for kernel composition traits than maize, and that teosinte can be exploited for the improvement of kernel composition traits in modern maize germplasm.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3