Affiliation:
1. Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
2. United States Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211
Abstract
Abstract
Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared with maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic lines (NILs) was previously developed to broaden the resources for genetic diversity of maize, and to discover novel alleles for agronomic and domestication traits. The 961 teosinte NILs were developed by backcrossing 10 geographically diverse parviglumis accessions into the B73 (reference genome inbred) background. The NILs were grown in two replications in 2009 and 2010 in Columbia, MO and Aurora, NY, respectively, and near infrared reflectance spectroscopy and nuclear magnetic resonance calibrations were developed and used to rapidly predict total kernel starch, protein, and oil content on a dry matter basis in bulk whole grains of teosinte NILs. Our joint-linkage quantitative trait locus (QTL) mapping analysis identified two starch, three protein, and six oil QTL, which collectively explained 18, 23, and 45% of the total variation, respectively. A range of strong additive allelic effects for kernel starch, protein, and oil content were identified relative to the B73 allele. Our results support our hypothesis that teosinte harbors stronger alleles for kernel composition traits than maize, and that teosinte can be exploited for the improvement of kernel composition traits in modern maize germplasm.
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献