McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data

Author:

Nelson Michael G1,Linheiro Raquel S,Bergman Casey M1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, M13 9PL, United Kingdom

Abstract

Abstract Transposable element (TE) insertions are among the most challenging types of variants to detect in genomic data because of their repetitive nature and complex mechanisms of replication . Nevertheless, the recent availability of large resequencing data sets has spurred the development of many new methods to detect TE insertions in whole-genome shotgun sequences. Here we report an integrated bioinformatics pipeline for the detection of TE insertions in whole-genome shotgun data, called McClintock (https://github.com/bergmanlab/mcclintock), which automatically runs and standardizes output for multiple TE detection methods. We demonstrate the utility of McClintock by evaluating six TE detection methods using simulated and real genome data from the model microbial eukaryote, Saccharomyces cerevisiae. We find substantial variation among McClintock component methods in their ability to detect nonreference TEs in the yeast genome, but show that nonreference TEs at nearly all biologically realistic locations can be detected in simulated data by combining multiple methods that use split-read and read-pair evidence. In general, our results reveal that split-read methods detect fewer nonreference TE insertions than read-pair methods, but generally have much higher positional accuracy. Analysis of a large sample of real yeast genomes reveals that most McClintock component methods can recover known aspects of TE biology in yeast such as the transpositional activity status of families, target preferences, and target site duplication structure, albeit with varying levels of accuracy. Our work provides a general framework for integrating and analyzing results from multiple TE detection methods, as well as useful guidance for researchers studying TEs in yeast resequencing data.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3