Exploring the Impact of Cleavage and Polyadenylation Factors on Pre-mRNA Splicing Across Eukaryotes

Author:

Lepennetier Gildas1,Catania Francesco1

Affiliation:

1. Institute for Evolution and Biodiversity, University of Münster, 48149, Germany

Abstract

Abstract In human, mouse, and Drosophila, the spliceosomal complex U1 snRNP (U1) protects transcripts from premature cleavage and polyadenylation at proximal intronic polyadenylation signals (PAS). These U1-mediated effects preserve transcription integrity, and are known as telescripting. The watchtower role of U1 throughout transcription is clear. What is less clear is whether cleavage and polyadenylation factors (CPFs) are simply patrolled or if they might actively antagonize U1 recruitment. In addressing this question, we found that, in the introns of human, mouse, and Drosophila, and of 14 other eukaryotes, including multi- and single-celled species, the conserved AATAAA PAS—a major target for CPFs—is selected against. This selective pressure, approximated using DNA strand asymmetry, is detected for peripheral and internal introns alike. Surprisingly, it is more pronounced within—rather than outside—the action range of telescripting, and particularly intense in the vicinity of weak 5′ splice sites. Our study uncovers a novel feature of eukaryotic genes: that the AATAAA PAS is universally counter-selected in spliceosomal introns. This pattern implies that CPFs may attempt to access introns at any time during transcription. However, natural selection operates to minimize this access. By corroborating and extending previous work, our study further indicates that CPF access to intronic PASs might perturb the recruitment of U1 to the adjacent 5′ splice sites. These results open the possibility that CPFs may impact the splicing process across eukaryotes.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3