De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections

Author:

Wu HainanORCID,Yao DanORCID,Chen YuhuaORCID,Yang WenguoORCID,Zhao WeiORCID,Gao Hua,Tong Chunfa1

Affiliation:

1. Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Abstract Populus simonii is an important tree in the genus Populus, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of P. simonii using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the P. simonii assembly. Genomic repeat analysis revealed that 41.47% of the P. simonii genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the P. simonii genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that P. simonii and Populus trichocarpa should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different Populus species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing P. simonii with other Populus species.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3