Marker-Trait Associations for Enhancing Agronomic Performance, Disease Resistance, and Grain Quality in Synthetic and Bread Wheat Accessions in Western Siberia

Author:

Bhatta Madhav1ORCID,Shamanin Vladimir2,Shepelev Sergey2ORCID,Baenziger P Stephen3,Pozherukova Violetta2,Pototskaya Inna2,Morgounov Alexey24

Affiliation:

1. Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706

2. Omsk State Agrarian University, Omsk, Russia

3. Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, and

4. International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey

Abstract

Abstract Exploiting genetically diverse lines to identify genes for improving crop performance is needed to ensure global food security. A genome-wide association study (GWAS) was conducted using 46,268 SNP markers on a diverse panel of 143 hexaploid bread and synthetic wheat to identify potential genes/genomic regions controlling agronomic performance (yield and 26 yield-related traits), disease resistance, and grain quality traits. From phenotypic evaluation, we found large genetic variation among the 35 traits and recommended five lines having a high yield, better quality, and multiple disease resistance for direct use in a breeding program. From a GWAS, we identified a total of 243 significant marker-trait associations (MTAs) for 35 traits that explained up to 25% of the phenotypic variance. Of these, 120 MTAs have not been reported in the literature and are potentially novel MTAs. In silico gene annotation analysis identified 116 MTAs within genes and of which, 21 MTAs were annotated as a missense variant. Furthermore, we were able to identify 23 co-located multi-trait MTAs that were also phenotypically correlated to each other, showing the possibility of simultaneous improvement of these traits. Additionally, most of the co-located MTAs were within genes. We have provided genomic fingerprinting for significant markers with favorable and unfavorable alleles in the diverse set of lines for developing elite breeding lines from useful trait-integration. The results from this study provided a further understanding of genetically complex traits and would facilitate the use of diverse wheat accessions for improving multiple traits in an elite wheat breeding program.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3