De Novo Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen Puccinia hordei Identifies Candidates for Three Avirulence Genes

Author:

Chen Jiapeng1ORCID,Wu Jingqin1,Zhang Peng1ORCID,Dong Chongmei1,Upadhyaya Narayana M2ORCID,Zhou Qian3,Dodds Peter2,Park Robert F1

Affiliation:

1. Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, NSW, Australia

2. Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia, and

3. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China

Abstract

Abstract Puccinia hordei (Ph) is a damaging pathogen of barley throughout the world. Despite its importance, almost nothing is known about the genomics of this pathogen, and a reference genome is lacking. In this study, the first reference genome was assembled for an Australian isolate of Ph (“Ph560”) using long-read SMRT sequencing. A total of 838 contigs were assembled, with a total size of 207 Mbp. This included both haplotype collapsed and separated regions, consistent with an estimated haploid genome size of about 150Mbp. An annotation pipeline that combined RNA-Seq of Ph-infected host tissues and homology to proteins from four other Puccinia species predicted 25,543 gene models of which 1,450 genes were classified as encoding secreted proteins based on the prediction of a signal peptide and no transmembrane domain. Genome resequencing using short-read technology was conducted for four additional Australian strains, Ph612, Ph626, Ph608 and Ph584, which are considered to be simple mutational derivatives of Ph560 with added virulence to one or two of three barley leaf rust resistance genes (viz. Rph3, Rph13 and Rph19). To identify candidate genes for the corresponding avirulence genes AvrRph3, AvrRph13 and AvrRph19, genetic variation in predicted secreted protein genes between the strains was correlated to the virulence profiles of each, identifying 35, 29 and 46 candidates for AvrRph13, AvrRph3 and AvrRph19, respectively. The identification of these candidate genes provides a strong foundation for future efforts to isolate these three avirulence genes, investigate their biological properties, and develop new diagnostic tests for monitoring pathogen virulence.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3