Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation

Author:

Stellwagen Sarah D1,Renberg Rebecca L2

Affiliation:

1. Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250

2. General Technical Services, Adelphi, MD 20783

Abstract

Abstract An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3