GWAS for Meat and Carcass Traits Using Imputed Sequence Level Genotypes in Pooled F2-Designs in Pigs

Author:

Falker-Gieske Clemens1ORCID,Blaj Iulia2ORCID,Preuß Siegfried3,Bennewitz Jörn3,Thaller Georg2ORCID,Tetens Jens14ORCID

Affiliation:

1. Department of Animal Sciences, Georg-August-University, 37077 Göttingen, Germany

2. Institute of Animal Breeding and Husbandry, Kiel University, 24118 Kiel, Germany

3. Institute of Animal Husbandry and Breeding, University of Hohenheim, 70599 Stuttgart, Germany, and

4. Center for Integrated Breeding Research, Georg-August-University, 37077 Göttingen, Germany

Abstract

Abstract In order to gain insight into the genetic architecture of economically important traits in pigs and to derive suitable genetic markers to improve these traits in breeding programs, many studies have been conducted to map quantitative trait loci. Shortcomings of these studies were low mapping resolution, large confidence intervals for quantitative trait loci-positions and large linkage disequilibrium blocks. Here, we overcome these shortcomings by pooling four large F2 designs to produce smaller linkage disequilibrium blocks and by resequencing the founder generation at high coverage and the F1 generation at low coverage for subsequent imputation of the F2 generation to whole genome sequencing marker density. This lead to the discovery of more than 32 million variants, 8 million of which have not been previously reported. The pooling of the four F2 designs enabled us to perform a joint genome-wide association study, which lead to the identification of numerous significantly associated variant clusters on chromosomes 1, 2, 4, 7, 17 and 18 for the growth and carcass traits average daily gain, back fat thickness, meat fat ratio, and carcass length. We could not only confirm previously reported, but also discovered new quantitative trait loci. As a result, several new candidate genes are discussed, among them BMP2 (bone morphogenetic protein 2), which we recently discovered in a related study. Variant effect prediction revealed that 15 high impact variants for the traits back fat thickness, meat fat ratio and carcass length were among the statistically significantly associated variants.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3