Genetic Control and Geo-Climate Adaptation of Pod Dehiscence Provide Novel Insights into Soybean Domestication

Author:

Zhang Jiaoping1,Singh Asheesh KORCID

Affiliation:

1. Department of Agronomy, Iowa State University, Ames, IA 50011

Abstract

Abstract Loss of pod dehiscence was a key step in soybean [Glycine max (L.) Merr.] domestication. Genome-wide association analysis for soybean shattering identified loci harboring Pdh1, NST1A and SHAT1-5. Pairwise epistatic interactions were observed, and the dehiscent Pdh1 overcomes resistance conferred by NST1A or SHAT1-5 locus. Further candidate gene association analysis identified a nonsense mutation in NST1A associated with pod dehiscence. Geographic analysis showed that in Northeast China (NEC), indehiscence at both Pdh1 and NST1A were required in cultivated soybean, while indehiscent Pdh1 alone is capable of preventing shattering in Huang-Huai-Hai (HHH) valleys. Indehiscent Pdh1 allele was only identified in wild soybean (Glycine soja L.) accession from HHH valleys suggesting that it may have originated in this region. No specific indehiscence was required in Southern China. Geo-climatic investigation revealed strong correlation between relative humidity and frequency of indehiscent Pdh1 across China. This study demonstrates that epistatic interaction between Pdh1 and NST1A fulfills a pivotal role in determining the level of resistance against pod dehiscence, and humidity shapes the distribution of indehiscent alleles. Our results give further evidence to the hypothesis that HHH valleys was at least one of the origin centers of cultivated soybean.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3