Positive Selection and Functional Divergence at Meiosis Genes That Mediate Crossing Over Across the Drosophila Phylogeny

Author:

Brand Cara L,Wright Lori,Presgraves Daven C1

Affiliation:

1. Department of Biology, University of Rochester, Rochester, New York, 14627

Abstract

Abstract Meiotic crossing over ensures proper segregation of homologous chromosomes and generates genotypic diversity. Despite these functions, little is known about the genetic factors and population genetic forces involved in the evolution of recombination rate differences among species. The dicistronic meiosis gene, mei-217/mei-218, mediates most of the species differences in crossover rate and patterning during female meiosis between the closely related fruitfly species, Drosophila melanogaster and D. mauritiana. The MEI-218 protein is one of several meiosis-specific mini-chromosome maintenance (mei-MCM) proteins that form a multi-protein complex essential to crossover formation, whereas the BLM helicase acts as an anti-crossover protein. Here we study the molecular evolution of five genes— mei-218, the other three known members of the mei-MCM complex, and Blm— over the phylogenies of three Drosophila species groups— melanogaster, obscura, and virilis. We then use transgenic assays in D. melanogaster to test if molecular evolution at mei-218 has functional consequences for crossing over using alleles from the distantly related species D. pseudoobscura and D. virilis. Our molecular evolutionary analyses reveal recurrent positive selection at two mei-MCM genes. Our transgenic assays show that sequence divergence among mei-218 alleles from D. melanogaster, D. pseudoobscura, and D. virilis has functional consequences for crossing over. In a D. melanogaster genetic background, the D. pseudoobscura mei-218 allele nearly rescues wildtype crossover rates but alters crossover patterning, whereas the D. virilis mei-218 allele conversely rescues wildtype crossover patterning but not crossover rates. These experiments demonstrate functional divergence at mei-218 and suggest that crossover rate and patterning are separable functions.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference76 articles.

1. Differential timing and control of noncrossover and crossover recombination during meiosis;Allers;Cell,2001

2. Crossing over in heterochromatin;Baker;Am. Nat.,1958

3. Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster;Baker;Genetics,1972

4. Meiotic mutants: genetic control of meiotic recombination and chromosome segregation;Baker,1976

5. Population Genomics of Transposable Elements in Drosophila;Barrón;Annu. Rev. Genet.,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3