The Magnitude of Candida albicans Stress-Induced Genome Instability Results from an Interaction Between Ploidy and Antifungal Drugs

Author:

Avramovska Ognenka,Hickman Meleah A1

Affiliation:

1. Dept. of Biology, Emory University

Abstract

Abstract Organismal ploidy and environmental stress impact the rates and types of mutational events. The opportunistic fungal pathogen Candida albicans, serves as a clinically relevant model for studying the interaction between eukaryotic ploidy and drug-induced mutagenesis. In this study, we compared the rates and types of genome perturbations in diploid and tetraploid C. albicans following exposure to two different classes of antifungal drugs; azoles and echinocandins. We measured mutations at three different scales: point mutation, loss-of-heterozygosity (LOH), and total DNA content for cells exposed to fluconazole and caspofungin. We found that caspofungin induced higher mutation rates than fluconazole, although this is likely an indirect consequence of stress-associated cell wall perturbations, rather than an inherent genotoxicity. Surprisingly, we found that antifungal drugs disproportionately elevated genome and ploidy instability in tetraploid C. albicans compared to diploids. Taken together, our results suggest that the magnitude of stress-induced mutagenesis results from an interaction between ploidy and antifungal drugs. These findings have both clinical and evolutionary implications for how fungal pathogens generate mutations in response to antifungal drug stress and how these mutations may facilitate the emergence of drug resistance.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Reference62 articles.

1. YMAP: a pipeline for visualization of copy number variation and loss of heterozygosity in eukaryotic pathogens.;Abbey;Genome Med.,2014

2. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains.;Bennett;EMBO J.,2003

3. Does stress induce (para)sex? Implications for Candida albicans evolution.;Berman;Trends Genet.,2012

4. A Human-Curated Annotation of the Candida albicans Genome.;Braun;PLoS Genet.,2005

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3