An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction

Author:

Montesinos-López Osval A1,Montesinos-López Abelardo2,Luna-Vázquez Francisco Javier1,Toledo Fernando H3,Pérez-Rodríguez Paulino4,Lillemo Morten5,Crossa José3

Affiliation:

1. Facultad de Telemática, Universidad de Colima, Colima, Colima, 28040, México

2. Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías, (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, 44430, México

3. Biometrics and Statistics Unit, International Maize and Wheat Improvement Center, (CIMMYT), Apdo. Postal 6-641, Ciudad de México, 06600, México

4. Colegio de Postgraduados, CP 56230, Montecillos, Edo. de México, México

5. Department of Plant Sciences, Norwegian University of Life Sciences, IHA/CIGENE, P.O. Box 5003, NO-1432 Ås, Norway

Abstract

Abstract Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by GS to perform predictions of candidate genotypes that were not phenotyped. Because there is no universally better model for prediction and models for each type of response variable are needed (continuous, binary, ordinal, count, etc.), an active area of research aims to develop statistical models for the prediction of univariate and multivariate traits in GS. However, most of the models developed so far are for univariate and continuous (Gaussian) traits. Therefore, to overcome the lack of multivariate statistical models for genome-based prediction by improving the original version of the BMTME, we propose an improved Bayesian multi-trait and multi-environment (BMTME) R package for analyzing breeding data with multiple traits and multiple environments. We also introduce Bayesian multi-output regressor stacking (BMORS) functions that are considerably efficient in terms of computational resources. The package allows parameter estimation and evaluates the prediction performance of multi-trait and multi-environment data in a reliable, efficient and user-friendly way. We illustrate the use of the BMTME with real toy datasets to show all the facilities that the software offers the user. However, for large datasets, the BME() and BMTME() functions of the BMTME R package are very intense in terms of computing time; on the other hand, less intensive computing is required with BMORS functions BMORS() and BMORS_Env() that are also included in the BMTME package.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3