Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population

Author:

Marla Sandeep R1ORCID,Burow Gloria2,Chopra Ratan2,Hayes Chad2,Olatoye Marcus O1,Felderhoff Terry1,Hu Zhenbin1,Raymundo Rubi1,Perumal Ramasamy13ORCID,Morris Geoffrey P1

Affiliation:

1. Department of Agronomy, Kansas State University, Manhattan, KS, 66506

2. USDA-ARS, Plant Stress & Germplasm Development Unit, Cropping Systems Research Lab, Lubbock, TX, 79415, and

3. Agricultural Research Center, Kansas State University, Hays, Kansas 67601

Abstract

Abstract Dissecting the genetic architecture of stress tolerance in crops is critical to understand and improve adaptation. In temperate climates, early planting of chilling-tolerant varieties could provide longer growing seasons and drought escape, but chilling tolerance (<15°) is generally lacking in tropical-origin crops. Here we developed a nested association mapping (NAM) population to dissect the genetic architecture of early-season chilling tolerance in the tropical-origin cereal sorghum (Sorghum bicolor [L.] Moench). The NAM resource, developed from reference line BTx623 and three chilling-tolerant Chinese lines, is comprised of 771 recombinant inbred lines genotyped by sequencing at 43,320 single nucleotide polymorphisms. We phenotyped the NAM population for emergence, seedling vigor, and agronomic traits (>75,000 data points from ∼16,000 plots) in multi-environment field trials in Kansas under natural chilling stress (sown 30–45 days early) and normal growing conditions. Joint linkage mapping with early-planted field phenotypes revealed an oligogenic architecture, with 5–10 chilling tolerance loci explaining 20–41% of variation. Surprisingly, several of the major chilling tolerance loci co-localize precisely with the classical grain tannin (Tan1 and Tan2) and dwarfing genes (Dw1 and Dw3) that were under strong directional selection in the US during the 20th century. These findings suggest that chilling sensitivity was inadvertently selected due to coinheritance with desired nontannin and dwarfing alleles. The characterization of genetic architecture with NAM reveals why past chilling tolerance breeding was stymied and provides a path for genomics-enabled breeding of chilling tolerance.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3