Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense Multilocus Mapping

Author:

Mollinari Marcelo12,Olukolu Bode A3ORCID,Pereira Guilherme da S12ORCID,Khan Awais4,Gemenet Dorcus5ORCID,Yencho G Craig2ORCID,Zeng Zhao-Bang12ORCID

Affiliation:

1. Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina

2. Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina

3. Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee

4. Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, New York, and

5. International Potato Center, ILRI Campus, Nairobi, Kenya

Abstract

Abstract The hexaploid sweetpotato (Ipomoea batatas (L.) Lam., 2n = 6x = 90) is an important staple food crop worldwide and plays a vital role in alleviating famine in developing countries. Due to its high ploidy level, genetic studies in sweetpotato lag behind major diploid crops significantly. We built an ultra-dense multilocus integrated genetic map and characterized the inheritance system in a sweetpotato full-sib family using our newly developed software, MAPpoly. The resulting genetic map revealed 96.5% collinearity between I. batatas and its diploid relative I. trifida. We computed the genotypic probabilities across the whole genome for all individuals in the mapping population and inferred their complete hexaploid haplotypes. We provide evidence that most of the meiotic configurations (73.3%) were resolved in bivalents, although a small portion of multivalent signatures (15.7%), among other inconclusive configurations (11.0%), were also observed. Except for low levels of preferential pairing in linkage group 2, we observed a hexasomic inheritance mechanism in all linkage groups. We propose that the hexasomic-bivalent inheritance promotes stability to the allelic transmission in sweetpotato.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3