CZT-1 Is a Novel Transcription Factor Controlling Cell Death and Natural Drug Resistance in Neurospora crassa

Author:

Gonçalves A Pedro112,Hall Charles3,Kowbel David J3,Glass N Louise3,Videira Arnaldo12

Affiliation:

1. IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal

2. ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

3. Plant and Microbial Biology Department, The University of California, Berkeley, 341 Koshland Hall, 94720, Berkeley, California

Abstract

Abstract We pinpoint CZT-1 (cell death–activated zinc cluster transcription factor) as a novel transcription factor involved in tolerance to cell death induced by the protein kinase inhibitor staurosporine in Neurospora crassa. Transcriptional profiling of staurosporine-treated wild-type cells by RNA-sequencing showed that genes encoding the machinery for protein synthesis are enriched among the genes repressed by the drug. Functional category enrichment analyses also show that genes encoding components of the mitochondrial respiratory chain are downregulated by staurosporine, whereas genes involved in endoplasmic reticulum activities are upregulated. In contrast, a staurosporine-treated Δczt-1 deletion strain is unable to repress the genes for the respiratory chain and to induce the genes related to the endoplasmic reticulum, indicating a role for CZT-1 in the regulation of activity of these organelles. The Δczt-1 mutant strain displays increased reactive oxygen species accumulation on insult with staurosporine. A genome-wide association study of a wild population of N. crassa isolates pointed out genes associated with a cell death role of CZT-1, including catalase-1 (cat-1) and apoptosis-inducing factor–homologous mitochondrion-associated inducer of death 2 (amid-2). Importantly, differences in the expression of czt-1 correlates with resistance to staurosporine among wild isolate strains. Our results reveal a novel transcription factor that regulates drug resistance and cell death in response to staurosporine in laboratory strains as well as in wild isolates of N. crassa.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3