Segregation of a Spontaneous Klrd1 (CD94) Mutation in DBA/2 Mouse Substrains

Author:

Shin Dai-Lun1,Pandey Ashutosh K2,Ziebarth Jesse Dylan2,Mulligan Megan K2,Williams Robert W2,Geffers Robert3,Hatesuer Bastian1,Schughart Klaus2,Wilk Esther11

Affiliation:

1. Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany

2. Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee

3. Research Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany

Abstract

Abstract Current model DBA/2J (D2J) mice lack CD94 expression due to a deletion spanning the last coding exon of the Klrd1 gene that occurred in the mid- to late 1980s. In contrast, DBA/2JRj (D2Rj) mice, crosses derived from DBA/2J before 1984, and C57BL/6J (B6) mice lack the deletion and have normal CD94 expression. For example, BXD lines (BXD1–32) generated in the 1970s by crossing B6 and D2J do not segregate for the exonic deletion and have high expression, whereas BXD lines 33 and greater were generated after 1990 are segregating for the deletion and have highly variable Klrd1 expression. We performed quantitative trait locus analysis of Klrd1 expression by using BXD lines with different generation times and found that the expression difference in Klrd1 in the later BXD set is driven by a strong cis-acting expression quantitative trait locus. Although the Klrd1/CD94 locus is essential for mousepox resistance, the genetic variation among D2 substrains and the later set of BXD strains is not associated with susceptibility to the Influenza A virus PR8 strain. Substrains with nearly identical genetic backgrounds that are segregating functional variants such as the Klrd1 deletion are useful genetic tools to investigate biological function.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3