Association Mapping of Germination Traits in Arabidopsis thaliana Under Light and Nutrient Treatments: Searching for G×E Effects

Author:

Morrison Ginnie D1,Linder C Randal1

Affiliation:

1. Department of Integrative Biology, University of Texas at Austin, Austin, Texas

Abstract

Abstract In the natural world, genotype expression is influenced by an organism’s environment. Identifying and understanding the genes underlying phenotypes in different environments is important for making advances in fields ranging from evolution to medicine to agriculture. With the availability of genome-wide genetic-marker datasets, it is possible to look for genes that interact with the environment. Using the model organism, Arabidopsis thaliana, we looked for genes underlying phenotypes as well as genotype-by-environment interactions in four germination traits under two light and two nutrient conditions. We then performed genome-wide association tests to identify candidate genes underlying the observed phenotypes and genotype-by-environment interactions. Of the four germination traits examined, only two showed significant genotype-by-environment interactions. While genome-wide association analyses did not identify any markers or genes explicitly linked to genotype-by-environment interactions, we did identify a total of 55 markers and 71 genes associated with germination differences. Of the 71 genes, four—ZIGA4, PS1, TOR, and TT12—appear to be strong candidates for further study of germination variation under different environments.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3