Sex-Determination System in the Diploid Yeast Zygosaccharomyces sapae

Author:

Solieri Lisa1,Dakal Tikam Chand1,Giudici Paolo1,Cassanelli Stefano1

Affiliation:

1. Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy

Abstract

Abstract Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301T, a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732T MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5–99.5%). ABT301T possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATa-idiomorph resulted in a single ZsMTLa locus encoding two Z. rouxii-like proteins MATa1 and MATa2. To assign the cloned ZsMTLα and ZsMTLa idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLa locus was 3′-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301T displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3