Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps

Author:

Diao Wenwen11,Mousset Mathilde1,Horsburgh Gavin J2,Vermeulen Cornelis J13,Johannes Frank45,van de Zande Louis1,Ritchie Michael G6,Schmitt Thomas7,Beukeboom Leo W1

Affiliation:

1. Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700CC, The Netherlands

2. Natural Environment Research Council Bio-Molecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom

3. Department of Pulmonary Diseases, University Medical Center Groningen, Groningen 9700 RB, The Netherlands

4. Population Epigenetics and Epigenomics, Department of Plant Sciences, Technical University Munich, 85354, Freising, Germany

5. Institute for Advanced Study, Technical University Munich, 85748, Garching, Germany

6. School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom

7. Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg 97074, Germany

Abstract

Abstract A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3