Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection

Author:

Müller Dominik,Schopp Pascal,Melchinger Albrecht E1

Affiliation:

1. Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany

Abstract

Abstract Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents (Np), but little is known about how Np affects genomic selection (GS) in RS, especially the persistency of prediction accuracy (rg,g^) and genetic gain. Synthetics were simulated by intermating Np= 2–32 parent lines from an ancestral population with short- or long-range linkage disequilibrium (LDA) and subjected to multiple cycles of GS. We determined rg,g^ and genetic gain across 30 cycles for different training set (TS) sizes, marker densities, and generations of recombination before model training. Contributions to rg,g^ and genetic gain from pedigree relationships, as well as from cosegregation and LDA between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between TS and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of rg,g^ was high for small Np, where predominantly cosegregation contributed to rg,g^, but also for large Np, where LDA replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing Np > 4, given long-range LDA in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to rg,g^ for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger TS size (NTS) and higher marker density improved persistency of rg,g^ and hence genetic gain, but additional recombinations could not increase genetic gain.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3