Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

Author:

Najor Nicole A1,Weatherford Layne2,Brush George S123

Affiliation:

1. Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201

2. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201

3. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201

Abstract

Abstract In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3