Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris)

Author:

Gao Dongying1,Zhao Dongyan2,Abernathy Brian1,Iwata-Otsubo Aiko1,Herrera-Estrella Alfredo3,Jiang Ning2,Jackson Scott A11

Affiliation:

1. Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602

2. Department of Horticulture, Michigan State University, East Lansing, Michigan 48824

3. Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Mexico 36821

Abstract

Abstract Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3