Forward Genetics by Sequencing EMS Variation-Induced Inbred Lines

Author:

Addo-Quaye Charles1,Buescher Elizabeth1,Best Norman1,Chaikam Vijay1,Baxter Ivan2,Dilkes Brian P1

Affiliation:

1. Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907

2. United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132

Abstract

Abstract In order to leverage novel sequencing techniques for cloning genes in eukaryotic organisms with complex genomes, the false positive rate of variant discovery must be controlled for by experimental design and informatics. We sequenced five lines from three pedigrees of ethyl methanesulfonate (EMS)-mutagenized Sorghum bicolor, including a pedigree segregating a recessive dwarf mutant. Comparing the sequences of the lines, we were able to identify and eliminate error-prone positions. One genomic region contained EMS mutant alleles in dwarfs that were homozygous reference sequences in wild-type siblings and heterozygous in segregating families. This region contained a single nonsynonymous change that cosegregated with dwarfism in a validation population and caused a premature stop codon in the Sorghum ortholog encoding the gibberellic acid (GA) biosynthetic enzyme ent-kaurene oxidase. Application of exogenous GA rescued the mutant phenotype. Our method for mapping did not require outcrossing and introduced no segregation variance. This enables work when line crossing is complicated by life history, permitting gene discovery outside of genetic models. This inverts the historical approach of first using recombination to define a locus and then sequencing genes. Our formally identical approach first sequences all the genes and then seeks cosegregation with the trait. Mutagenized lines lacking obvious phenotypic alterations are available for an extension of this approach: mapping with a known marker set in a line that is phenotypically identical to starting material for EMS mutant generation.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3