Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant

Author:

Wong Lai H1,Flibotte Stephane12,Sinha Sunita1,Chiang Jennifer1,Giaever Guri1,Nislow Corey1

Affiliation:

1. Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

2. Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

Abstract

Abstract Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker’s yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug’s binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21. These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3