Targeted Sequence Capture Provides Insight into Genome Structure and Genetics of Male Sterility in a Gynodioecious Diploid Strawberry, Fragaria vesca ssp. bracteata (Rosaceae)

Author:

Tennessen Jacob A1,Govindarajulu Rajanikanth2,Liston Aaron3,Ashman Tia-Lynn12

Affiliation:

1. Department of Zoology, Oregon State University, Corvallis, Oregon 97331

2. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

3. Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331

Abstract

Abstract Gynodioecy is a sexual system wherein females coexist with hermaphrodites. It is of interest not only because male-sterile plants are advantageous in plant breeding but also because it can be a crucial step in the evolutionary transition to entirely separate sexes (dioecy) from a hermaphroditic ancestor. The gynodioecious diploid wild strawberry, Fragaria vesca ssp. bracteata (Rosaceae), is a member of a clade with both dioecious and cultivated species, making it an ideal model in which to study the genetics of male sterility. To create a genetic map of F. v. ssp. bracteata, we identified informative polymorphisms from genomic sequencing (3−5x coverage) of two outbred plants from the same population. Using targeted enrichment, we sequenced 200 bp surrounding each of 6575 polymorphisms in 48 F1 offspring, yielding genotypes at 98% of targeted sites with mean coverage >100x, plus more than 600-kb high-coverage nontargeted sequence. With the resulting linkage map of 7802 stringently filtered markers (5417 targeted), we assessed recombination rates and genomic incongruities. Consistent with past work in strawberries, male sterility is dominant, segregates 1:1, and maps to a single location in the female. Further mapping an additional 55 offspring places male sterility in a gene-dense, 338-kb region of chromosome 4. The region is not syntenic with the sex-determining regions in the closely related octoploids, F. chiloensis and F. virginiana, suggesting either independent origins or translocation. The 57 genes in this region do not include protein families known to control male sterility and thus suggest alternate mechanisms for the suppression of male function.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3