Genetic Analysis of Substrain Divergence in Non-Obese Diabetic (NOD) Mice

Author:

Simecek Petr11,Churchill Gary A1,Yang Hyuna2,Rowe Lucy B1,Herberg Lieselotte3,Serreze David V1,Leiter Edward H1

Affiliation:

1. The Jackson Laboratory, Bar Harbor, Maine 04609

2. Exploratory Statistics, DSS, AbbVie, North Chicago, Illinois 60064

3. Diabetes Research Institute, Düsseldorf, Germany

Abstract

Abstract The non-obese diabetic (NOD) mouse is a polygenic model for type 1 diabetes that is characterized by insulitis, a leukocytic infiltration of the pancreatic islets. During ~35 years since the original inbred strain was developed in Japan, NOD substrains have been established at different laboratories around the world. Although environmental differences among NOD colonies capable of impacting diabetes incidence have been recognized, differences arising from genetic divergence have not been analyzed previously. We use both mouse diversity array and whole-exome capture sequencing platforms to identify genetic differences distinguishing five NOD substrains. We describe 64 single-nucleotide polymorphisms, and two short indels that differ in coding regions of the five NOD substrains. A 100-kb deletion on Chromosome 3 distinguishes NOD/ShiLtJ and NOD/ShiLtDvs from three other substrains, whereas a 111-kb deletion in the Icam2 gene on Chromosome 11 is unique to the NOD/ShiLtDvs genome. The extent of genetic divergence for NOD substrains is compared with similar studies for C57BL6 and BALB/c substrains. As mutations are fixed to homozygosity by continued inbreeding, significant differences in substrain phenotypes are to be expected. These results emphasize the importance of using embryo freezing methods to minimize genetic drift within substrains and of applying appropriate genetic nomenclature to permit substrain recognition when one is used.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3