Whole-Genome Sequencing of a Canine Family Trio Reveals a FAM83G Variant Associated with Hereditary Footpad Hyperkeratosis

Author:

Sayyab Shumaila12,Viluma Agnese1,Bergvall Kerstin3,Brunberg Emma4,Jagannathan Vidhya5,Leeb Tosso5,Andersson Göran11,Bergström Tomas F1

Affiliation:

1. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

2. Research Center for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan

3. Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

4. Norwegian Centre for Organic Agriculture, NO-6630 Tingvoll, Norway

5. Institute of Genetics, University of Bern, 3001 Bern, Switzerland

Abstract

Abstract Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10–20 cases and 10–20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted resequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrländer dogs. To our knowledge, this is the first time this family trio WGS-approach has been used successfully to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrländer dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences, and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G > C (p.R52P) was found to be concordant in eight additional cases, and 16 healthy Kromfohrländer dogs.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3