c-Type Cytochrome Assembly in Saccharomyces cerevisiae: A Key Residue for Apocytochrome c1/Lyase Interaction

Author:

Corvest Vincent1,Murrey Darren A1,Bernard Delphine G2,Knaff David B3,Guiard Bernard2,Hamel Patrice P1

Affiliation:

1. Department of Molecular Genetics and Department of Molecular Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210

2. Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France and

3. Department of Chemistry and Biochemistry, Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79409

Abstract

Abstract The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c1 are assembled by the cytochrome c heme lyases (CCHL and CC1HL) and by Cyc2p, a putative redox protein. A cytochrome c1 mutant with a CAPCH heme-binding site instead of the wild-type CAACH is strictly dependent upon Cyc2p for assembly. In this context, we found that overexpression of CC1HL, as well as mutations of the proline in the CAPCH site to H, L, S, or T residues, can bypass the absence of Cyc2p. The P mutation was postulated to shift the CXXCH motif to an oxidized form, which must be reduced in a Cyc2p-dependent reaction before heme ligation. However, measurement of the redox midpoint potential of apocytochrome c1 indicates that neither the P nor the T residues impact the thermodynamic propensity of the CXXCH motif to occur in a disulfide vs. dithiol form. We show instead that the identity of the second intervening residue in the CXXCH motif is key in determining the CCHL-dependent vs. CC1HL-dependent assembly of holocytochrome c1. We also provide evidence that Cyc2p is dedicated to the CCHL pathway and is not required for the CC1HL-dependent assembly of cytochrome c1.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3