Lambda Red Recombineering in Escherichia coli Occurs Through a Fully Single-Stranded Intermediate

Author:

Mosberg J A12,Lajoie M J12,Church G M1

Affiliation:

1. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 and

2. Program in Chemical Biology, Harvard UniversityCambridge, Massachusetts 02138

Abstract

Abstract The phage lambda-derived Red recombination system is a powerful tool for making targeted genetic changes in Escherichia coli, providing a simple and versatile method for generating insertion, deletion, and point mutations on chromosomal, plasmid, or BAC targets. However, despite the common use of this system, the detailed mechanism by which lambda Red mediates double-stranded DNA recombination remains uncertain. Current mechanisms posit a recombination intermediate in which both 5′ ends of double-stranded DNA are recessed by λ exonuclease, leaving behind 3′ overhangs. Here, we propose an alternative in which lambda exonuclease entirely degrades one strand, while leaving the other strand intact as single-stranded DNA. This single-stranded intermediate then recombines via beta recombinase-catalyzed annealing at the replication fork. We support this by showing that single-stranded gene insertion cassettes are recombinogenic and that these cassettes preferentially target the lagging strand during DNA replication. Furthermore, a double-stranded DNA cassette containing multiple internal mismatches shows strand-specific mutations cosegregating roughly 80% of the time. These observations are more consistent with our model than with previously proposed models. Finally, by using phosphorothioate linkages to protect the lagging-targeting strand of a double-stranded DNA cassette, we illustrate how our new mechanistic knowledge can be used to enhance lambda Red recombination frequency. The mechanistic insights revealed by this work may facilitate further improvements to the versatility of lambda Red recombination.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3