Affiliation:
1. Department of Entomology, University of California, Riverside, California 92521-0314
2. Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742
Abstract
Abstract
Transposable elements have proven to be invaluable tools for genetically manipulating a wide variety of plants, animals, and microbes. Some have suggested that they could be used to spread desirable genes, such as refractoriness to Plasmodium infection, through target populations of Anopheles gambiae, thereby disabling the mosquito's ability to transmit malaria. To achieve this, a transposon must remain mobile and intact after the initial introduction into the genome. Endogenous, active class II transposable elements from An. gambiae have not been exploited as gene vectors/drivers because none have been isolated. We report the discovery of an active class II transposable element, Herves, from the mosquito An. gambiae. Herves is a member of a distinct subfamily of hAT elements that includes the hopper-we element from Bactrocera dorsalis and B. cucurbitae. Herves was transpositionally active in mobility assays performed in Drosophila melanogaster S2 cells and developing embryos and was used as a germ-line transformation vector in D. melanogaster. Herves displays an altered target-site preference from the distantly related hAT elements, Hermes and hobo. Herves is also present in An. arabiensis and An. merus with copy numbers similar to that found in An. gambiae. Preliminary data from an East African population are consistent with the element being transpositionally active in mosquitoes.
Publisher
Oxford University Press (OUP)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献