Saccharomyces cerevisiae Ub-Conjugating Enzyme Ubc4 Binds the Proteasome in the Presence of Translationally Damaged Proteins

Author:

Chuang Show-Mei1,Madura Kiran1

Affiliation:

1. Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854

Abstract

Abstract Surveillance mechanisms that monitor protein synthesis can promote rapid elimination of misfolded nascent proteins. We showed that the translation elongation factor eEF1A and the proteasome subunit Rpt1 play a central role in the translocation of nascent-damaged proteins to the proteasome. We show here that multiubiquitinated proteins, and the ubiquitin-conjugating (E2) enzyme Ubc4, are rapidly detected in the proteasome following translational damage. However, Ubc4 levels in the proteasome were reduced significantly in a strain that expressed a mutant Rpt1 subunit. Ubc4 and Ubc5 are functionally redundant E2 enzymes that represent ideal candidates for ubiquitinating damaged nascent proteins because they lack significant substrate specificity, are required for the degradation of bulk, damaged proteins, and contribute to cellular stress-tolerance mechanisms. In agreement with this hypothesis, we determined that ubc4Δ ubc5Δ is exceedingly sensitive to protein translation inhibitors. Collectively, these studies suggest a specific role for Ubc4 and Ubc5 in the degradation of cotranslationally damaged proteins that are targeted to the proteasome.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3