Estimating Barriers to Gene Flow from Distorted Isolation-by-Distance Patterns

Author:

Ringbauer Harald1,Kolesnikov Alexander1,Field David L2,Barton Nicholas H1

Affiliation:

1. Institute of Science and Technology Austria, Klosterneuburg A-3400, Austria

2. Department of Botany and Biodiversity Research, University of Vienna, A-1030, Austria

Abstract

Abstract Ringbauer et al. introduce a novel method to estimate barriers to gene flow in a two-dimensional population. Their inference scheme utilizes geographically... In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes than geographically well-separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the barrier. Here, we introduce an inference scheme that uses this signal to detect and estimate the strength of a linear barrier to gene flow in two dimensions. We use a diffusion approximation to model the effects of a barrier on the geographic spread of ancestry backward in time. This approach allows us to calculate the chance of recent coalescence and probability of identity by descent. We introduce an inference scheme that fits these theoretical results to the geographic covariance structure of bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an example application to an Antirrhinum majus (snapdragon) flower-color hybrid zone, where we do not detect any signal of a strong genome-wide barrier to gene flow.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3