Kinetochore Components Required for Centromeric Chromatin Assembly Are Impacted by Msc1 in Schizosaccharomyces pombe

Author:

Gao Chenchao1,Langbein Lauren1,Kamal Fariha1,George Anuja A1,Walworth Nancy C12

Affiliation:

1. Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey 08854-5635

2. Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903-2681

Abstract

Abstract Eukaryotic chromosome segregation requires a protein complex known as the kinetochore that mediates attachment between mitotic spindle microtubules and centromere-specific nucleosomes composed of the widely conserved histone variant CENP-A. Mutations in kinetochore proteins of the fission yeast Schizosaccharomyces pombe lead to chromosome missegregation such that daughter cells emerge from mitosis with unequal DNA content. We find that multiple copies of Msc1—a fission yeast homolog of the KDM5 family of proteins—suppresses the temperature-sensitive growth defect of several kinetochore mutants, including mis16 and mis18, as well as mis6, mis15, and mis17, components of the Constitutive Centromere Associated Network (CCAN). On the other hand, deletion of msc1 exacerbates both the growth defect and chromosome missegregation phenotype of each of these mutants. The C-terminal PHD domains of Msc1, previously shown to associate with a histone deacetylase activity, are necessary for Msc1 function when kinetochore mutants are compromised. We also demonstrate that, in the absence of Msc1, the frequency of localization to the kinetochore of Mis16 and Mis15 is altered from wild-type cells. As we show here for msc1, others have shown that elevating cnp1 levels acts similarly to promote survival of the CCAN mutants. The rescue of mis15 and mis17 by cnp1 is, however, independent of msc1. Thus, Msc1 appears to contribute to the chromatin environment at the centromere: the absence of Msc1 sensitizes cells to perturbations in kinetochore function, while elevating Msc1 overcomes loss of function of critical components of the kinetochore and centromere.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3