Additive Phenotypes Underlie Epistasis of Fitness Effects

Author:

Sackman Andrew M,Rokyta Darin R1

Affiliation:

1. Department of Biological Science, Florida State University, Tallahassee, Florida 32306

Abstract

Abstract Gene interactions, or epistasis, play a large role in determining evolutionary outcomes. The ruggedness of fitness landscapes, and thus the predictability of evolution and the accessibility of high-fitness genotypes, is determined largely by the pervasiveness of epistasis and the degree of correlation between similar genotypes. We created all possible pairings of three sets of five beneficial first-step mutations fixed during adaptive walks under three different regimes: selection on growth rate alone, on growth rate and thermal stability, and on growth rate and pH stability. All 30 double-mutants displayed negative, antagonistic epistasis with regard to growth rate and fitness, but positive epistasis and additivity were common for the stability phenotypes. This suggested that biophysically simple phenotypes, such as capsid stability, may on average behave more additively than complex phenotypes like viral growth rate. Growth rate epistasis was also smaller in magnitude when the individual effects of single mutations were smaller. Significant sign epistasis, such that the effect of a mutation that is beneficial in the wild-type background is deleterious in combination with a second mutation, emerged more frequently in intragenic mutational pairings than in intergenic pairs, and was evident in nearly half of the double-mutants, indicating that the fitness landscape is moderately uncorrelated and of intermediate ruggedness. Together, our results indicated that mutations may interact additively with regard to phenotype when considered at a basic, biophysical level, but that epistasis arises as a result of pleiotropic interactions between the individual components of complex phenotypes and diminishing returns arising from intermediate phenotypic optima.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3