In Vivo Analysis of a Gain-of-Function Mutation in the Drosophila eag-Encoded K+ Channel

Author:

Cardnell Robert J G1,Dalle Nogare Damian E1,Ganetzky Barry2,Stern Michael1

Affiliation:

1. Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892 and

2. Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Abstract Neuronal Na+ and K+ channels elicit currents in opposing directions and thus have opposing effects on neuronal excitability. Mutations in genes encoding Na+ or K+ channels often interact genetically, leading to either phenotypic suppression or enhancement for genes with opposing or similar effects on excitability, respectively. For example, the effects of mutations in Shaker (Sh), which encodes a K+ channel subunit, are suppressed by loss-of-function mutations in the Na+ channel structural gene para, but enhanced by loss-of-function mutations in a second K+ channel encoded by eag. Here we identify two novel mutations that suppress the effects of a Sh mutation on behavior and neuronal excitability. We used recombination mapping to localize both mutations to the eag locus, and we used sequence analysis to determine that both mutations are caused by a single amino acid substitution (G297E) in the S2–S3 linker of Eag. Because these novel eag mutations confer opposite phenotypes to eag loss-of-function mutations, we suggest that eagG297E causes an eag gain-of-function phenotype. We hypothesize that the G297E substitution may cause premature, prolonged, or constitutive opening of the Eag channels by favoring the “unlocked” state of the channel.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3