Evidence That the Origin of Naked Kernels During Maize Domestication Was Caused by a Single Amino Acid Substitution in tga1

Author:

Wang Huai11,Studer Anthony J11,Zhao Qiong11,Meeley Robert2,Doebley John F1

Affiliation:

1. Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53076

2. DuPont Pioneer, Johnston, Iowa 50131

Abstract

Abstract teosinte glume architecture1 (tga1), a member of the SBP-box gene family of transcriptional regulators, has been identified as the gene conferring naked kernels in maize vs. encased kernels in its wild progenitor, teosinte. However, the identity of the causative polymorphism within tga1 that produces these different phenotypes has remained unknown. Using nucleotide diversity data, we show that there is a single fixed nucleotide difference between maize and teosinte in tga1, and this difference confers a Lys (teosinte allele) to Asn (maize allele) substitution. This substitution transforms TGA1 into a transcriptional repressor. While both alleles of TGA1 can bind a GTAC motif, maize-TGA1 forms more stable dimers than teosinte-TGA1. Since it is the only fixed difference between maize and teosinte, this alteration in protein function likely underlies the differences in maize and teosinte glume architecture. We previously reported a difference in TGA1 protein abundance between maize and teosinte based on relative signal intensity of a Western blot. Here, we show that this signal difference is not due to tga1 but to a second gene, neighbor of tga1 (not1). Not1 encodes a protein that has 92% amino acid similarity to TGA1 and that is recognized by the TGA1 antibody. Genetic mapping and phenotypic data show that tga1, without a contribution from not1, controls the difference in covered vs. naked kernels. No trait differences could be associated with the maize vs. teosinte alleles of not1. Our results document how morphological evolution can be driven by a simple nucleotide change that alters protein function.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3