Evolution of Mating Systems in Basidiomycetes and the Genetic Architecture Underlying Mating-Type Determination in the Yeast Leucosporidium scottii

Author:

Maia Teresa M1,Lopes Susana T1,Almeida João M G C F1,Rosa Luiz H2,Sampaio José Paulo1,Gonçalves Paula1,Coelho Marco A1

Affiliation:

1. UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

2. Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brazil

Abstract

Abstract In most fungi, sexual reproduction is bipolar; that is, two alternate sets of genes at a single mating-type (MAT) locus determine two mating types. However, in the Basidiomycota, a unique (tetrapolar) reproductive system emerged in which sexual identity is governed by two unlinked MAT loci, each of which controls independent mechanisms of self/nonself recognition. Tetrapolar-to-bipolar transitions have occurred on multiple occasions in the Basidiomycota, resulting, for example, from linkage of the two MAT loci into a single inheritable unit. Nevertheless, owing to the scarcity of molecular data regarding tetrapolar systems in the earliest-branching lineage of the Basidiomycota (subphylum Pucciniomycotina), it is presently unclear if the last common ancestor was tetrapolar or bipolar. Here, we address this question, by investigating the mating system of the Pucciniomycotina yeast Leucosporidium scottii. Using whole-genome sequencing and chromoblot analysis, we discovered that sexual reproduction is governed by two physically unlinked gene clusters: a multiallelic homeodomain (HD) locus and a pheromone/receptor (P/R) locus that is biallelic, thereby dismissing the existence of a third P/R allele as proposed earlier. Allele distribution of both MAT genes in natural populations showed that the two loci were in strong linkage disequilibrium, but independent assortment of MAT alleles was observed in the meiotic progeny of a test cross. The sexual cycle produces fertile progeny with similar proportions of the four mating types, but approximately 2/3 of the progeny was found to be nonhaploid. Our study adds to others in reinforcing tetrapolarity as the ancestral state of all basidiomycetes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3